Infinitesimal Group Schemes as Iterative Differential Galois Groups

نویسنده

  • ANDREAS MAURISCHAT
چکیده

This article is concerned with Galois theory for iterative differential fields (ID-fields) in positive characteristic. More precisely, we consider purely inseparable Picard-Vessiot extensions, because these are the ones having an infinitesimal group scheme as iterative differential Galois group. In this article we prove a necessary and sufficient condition to decide whether an infinitesimal group scheme occurs as Galois group scheme of a Picard-Vessiot extension over a given ID-field or not. In particular, this solves the inverse ID-Galois problem for infinitesimal group schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie symmetries and differential Galois groups of linear equations

For a linear ordinary differential equation the Lie algebra of its infinitesimal Lie symmetries is compared with its differential Galois group. For this purpose an algebraic formulation of Lie symmetries is developed. It turns out that there is no direct relation between the two above objects. In connection with this a new algorithm for computing the Lie symmetries of a linear ordinary differen...

متن کامل

Galois Theory for Iterative Connections and Nonreduced Galois Groups

This article presents a theory of modules with iterative connection. This theory is a generalisation of the theory of modules with connection in characteristic zero to modules over rings of arbitrary characteristic. We show that these modules with iterative connection (and also the modules with integrable iterative connection) form a Tannakian category, assuming some nice properties for the und...

متن کامل

The Differential Galois Theory of Strongly Normal Extensions

Differential Galois theory, the theory of strongly normal extensions, has unfortunately languished. This may be due to its reliance on Kolchin’s elegant, but not widely adopted, axiomatization of the theory of algebraic groups. This paper attempts to revive the theory using a differential scheme in place of those axioms. We also avoid using a universal differential field, instead relying on a c...

متن کامل

Iterative differential Galois theory in positive characteristic: A model theoretic approach

This paper introduces a natural extension of Kolchin’s differential Galois theory to positive characteristic iterative differential fields, generalizing to the non-linear case the iterative Picard-Vessiot theory recently developed by Matzat and van der Put. We use the methods and framework provided by the model theory of iterative differential fields. We offer a definition of strongly normal ex...

متن کامل

On a Discrepancy among Picard-vessiot Theories in Positive Characteristics

There is a serious discrepancy among literature on the Picard-Vessiot theory in positive characteristics (for iterative differential fields). We consider descriptions of Galois correspondence in four approaches to this subject: Okugawa’s result [7], Takeuchi’s Hopf algebraic approach [11] (and [3]), the result of Matzat and van der Put [6], and the model theoretic approach by Pillay [8]. In the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009